White Paper

Brought to you by Eriez Orange University®

TITLE: Magnetic Separation Techniques to Improve Grinding Circuit Efficiency – 2014

AUTHOR: Jose Marin, Director of Materials and Minerals Processing, Eriez

Magnetic Separation Techniques to Improve Grinding Circuit Efficiency – 2014 New Trunnion Magnet Technology Provides Significant Cost Savings By Jose Marin, Eriez Director-Minerals/Materials Processing

Grinding Ball Fragments in the milling circuit impact on two critical areas. One is the crushing circuit where companies have observed damage to crushers, unscheduled downtime and loss of production. The other is the grinding circuit where companies have discovered wear to pumps, sumps, piping, hydrocyclones, mill liners as well as inefficient grinding, power consumption and optimization of mill throughout overall.

After reading this article, the reader will realize why a trunnion magnet offers a significant return on investment with tremendous cost savings.

* The Trunnion Magnet is an enhanced system for the separation and removal of balls and broken ball pieces typically used for ore processing in ball/SAG mill operations. Depending upon mill capacity, ball size and other parameters, Eriez will select and specify the appropriate construction features. Figures 1 and 2 indicate respectfully the damage a grinding ball did to a cone crusher mantle—and the accelerated wear to a pump impeller as an example of the equipment imparted by recirculating steel scots. This results in costly repairs, often unscheduled downtime and loss of production.

Fig. 1. Cone Crusher Mantle damaged by a grinding ball - ultimately resulting in costly repairs, unscheduled downtime and loss of production.

Fig. 2. Accelerated wear to pump impellers, and all other process plant in contact with or impacted by recirculating steel scats.

* Figures 1 and 2

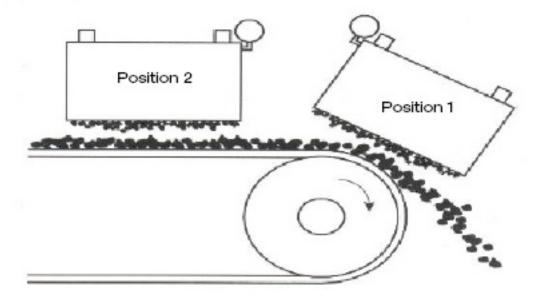
Here are four applications/circuit locations accompanied by a recommended equipment solution. Each has its own set of challenges, and each is approached in a different manner.

Application/Circuit Location

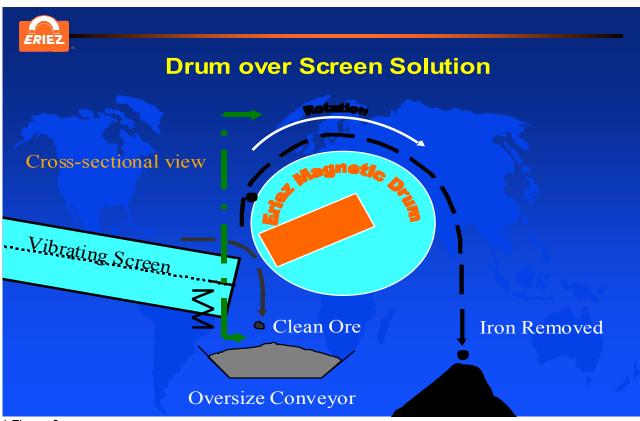
- Pebble Crusher
- SAG Mill Vibrating Screen Oversize
- Ball Mill Discharge

Technique/Equipment Solution

- Suspended Electromagnet
- Suspended Magnetic Drum
- Trunnion Magnet


Pebble Crusher

Figures 3 and 4 shows the location of a suspended electromagnet over a pebble crusher conveyor.


* Figures 3 and 4

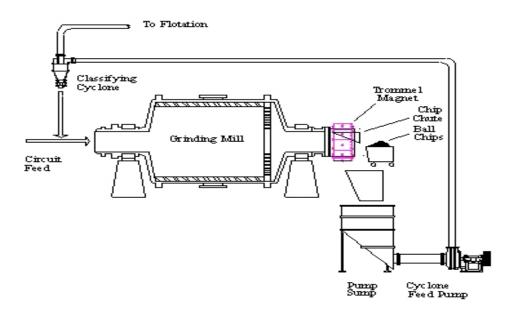
In this application, over the overhead pulley is preferred to the cross belt position (See Figure 5). A magnet width must be utilized to provide the most effective burden width coverage. The smallest size and shape of the tramp (steel scats) to be removed dictates the size of the magnet. Other considerations include the burden depth, belt speed, capacity, as well as clearance to the magnet and specification of a self-cleaning belt.

SAG Mill Vibrating Screen Deck

By placing a magnetic drum over a vibrating screen (Figure 9,) an installation will realize a number of benefits:

* Figure 9

- Provides a relatively slow-moving ore
- Eliminates the dead burden of a conveyor belt, since this is essentially a mono-layer approach. (See Figure 10)
- Agitates material to aid the physical release of entrapped steel scats.
- Able to place magnetic drum close (150 to 250 mm) to discharging ore.
- Effectively remove long rods before they spear and damage the conveyor belt.



* Figure 10

Ball Mill Discharge

Figures 11 and 12 indicate how a trommel screen is replaced by a trunnion magnet system.

The trunnion magnet is mounted at the ball mill discharge point.

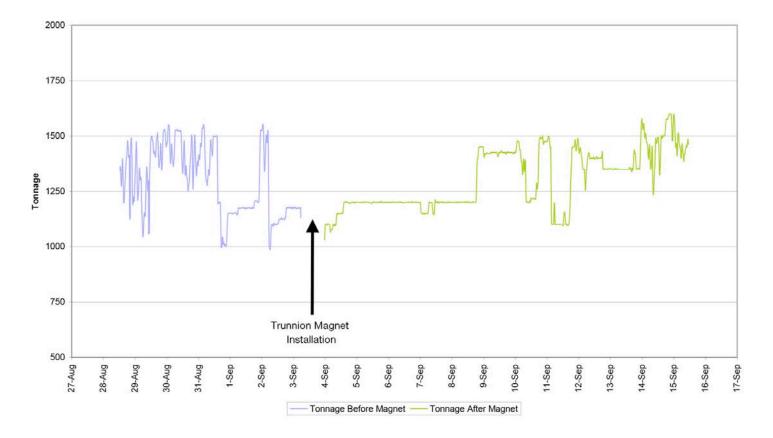
* Figure 12

There are significant advantages and measured improvements when a trunnion magnet is

installed (Figure13):

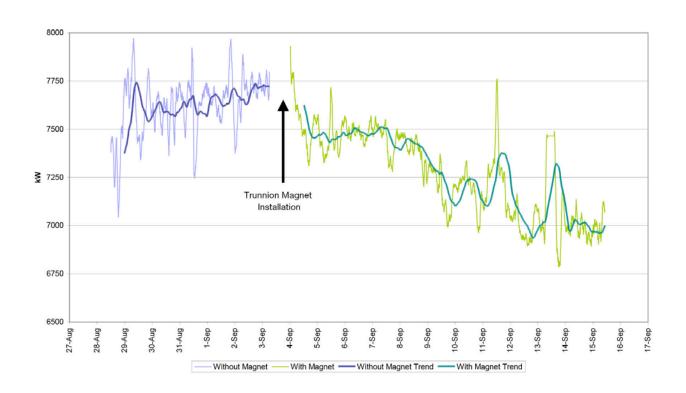
- It eliminates the higher capital cost of a trammel screen and the maintenance it requires.
- It extends pump and hydrocyclone life that has been documented at 250%.
- It increases mill throughput 5 percent.
- It reduces mill power consumption 8%.
- It results in 10% reduction in the mill work index due to more efficient grinding.

As part of this article, there are two Ball Mill Calculations comparing conventional ball mill power consumption (Hogg & Fuerstenau Model) before tramp steel removal (Figure 14) and after tramp steel removal (Figure 15). These calculations indicate the ball charge is reduced from 678 tons to 585 tons (target ball loading).

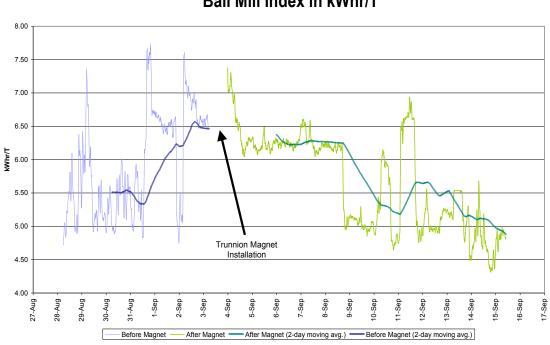

	C	ONVENTI	ONAL B	ALL MIL	L POWER ES	TIMATIO	N	
			Hogg &	E Fuerste	enau Model			
Rema		Note: Tha	nt the ba	II charge	rior to the rem e is 678 tons	noval of t	ihe tran	np steel
	ensions	s and Ope	rating C	ondition	15		Mill	
						Po	wer kW	
							<u>6121</u>	_Balls
Diameter	Length	Mill Speed	Charge	Balls	Interstitial	Lift —	<u>6121</u> <u>30</u>	_Balls Overfilling
<u>ft</u>	<u>t</u>	% Critical	Filling%	Filling%	Slurry Filling%l	Angle (°)	<u>30</u> 1010	Overfilling Slurry
	<u>ft</u> 36.00	<u>% Critical</u> 76.00					<u>30</u> <u>1010</u> 7161	Overfilling Slurry Net Total
<u>ft</u>	<u>t</u>	% Critical	Filling%	Filling%	Slurry Filling%l	Angle (°)	<u>30</u> 1010	Overfilling Slurry Net Total % Losses
<u>ft</u>	ft 36.00 RPM	<u>% Critical</u> 76.00	Filling% 38.00	Filling%	Slurry Filling%l	<u>Angle (°)</u> 23.47	<u>30</u> <u>1010</u> <u>7161</u> <u>7.00</u>	Overfilling Slurry Net Total % Losses Gross Total
<u>ft</u> 2200	ft 36.00 RPM n the Mill	<u>% Critical</u> 76.00 12.41	Filling%	Filling%	Slurry Filling%1 100.00 Mill Charge Weig	<u>Angle (°)</u> 23.47	<u>30</u> <u>1010</u> <u>7161</u> <u>7.00</u>	Overfilling Slurry Net Total % Losses
ft 2200 % Solids i Ore Densi	ft 36.00 RPM n the Mill	<u>% Critical</u> 76.00 12.41 <u>76.00</u> 270	Filling% 38.00 Charge	Filling% 37.55	Slurry Filling%1 100.00 Mill Charge Weig	Angle (°) 23.47 ht Tons Slurry	<u>30</u> <u>1010</u> <u>7161</u> <u>7.00</u>	Overfilling Slurry Net Total & Losses Gross Total Apparent

* Figure 14 (Before Tramp Removal)

	C	ONVENTI			L POWER ES enau Model	TIMATIO	N	
Remark	Note		e ball ch		he removal of s been reduce			ip steel
Mill Dim	ensions	and Ope	rating C	onditior	IS		Mill	
Diameter	Length	Mill Speed	Charge	Balle	Interatitial	_	ower kW <u>5767</u>	_Balls
Diameter ft	Length	Mill Speed % Critical	Charge Filling%	Balls Filling%	Interstitial Slurry Filling%I	Lift	<u>5767</u> <u>33</u>	Overfilling
Diameter <u>ft</u> 2200	Length ft 36.00 RPM	Mill Speed <u>% Critical</u> 76.00 12.41			Interstitial <u>Slurry Filling%I</u> 100.00	Lift	5767	Overfilling Slurry Net Total % Losses
<u>ft</u> 2200	1 36.00 RPM	<u>% Critical</u> 76.00 12.41	Filling% 32.85	Filling%	Slurry Filling%l	Lift <u>Angle (°)</u> 23.47	5767 33 51 51 	Overfilling Slurry Net Total % Losses Gross Tota
<u>ft</u>	ft 36.00 RPM n the Mill	<u>% Critical</u> 76.00	Filling%	Filling%	Slurry Filling%1 100.00 Mill Charge Weig	Lift <u>Angle (°)</u> 23.47	5767 33 51 51 	Overfilling Slurry Net Total % Losses
ft 2200 % Solids in Ore Densi	ft 36.00 RPM n the Mill	<u>% Critical</u> 76.00 12.41 <u>76.00</u> 270	Filling% 32.85 Charge	Filling% 32.40	Slurry Filling%1 100.00 Mill Charge Weig	Lift Angle (°) 23.47 ht Tons Slurry	5767 33 51 51 	Overfilling Slurry Net Total % Losses Gross Tota Apparent


* Figure 15 (After Tramp Removal)

Three other figures 16, 17 and 18 indicate how ball mill tonnage is consistently greater after the trunnion magnet is installed, while energy savings also occurs. In addition, the mill work index dropped impressively.



Ball Mill Tonnage

Ball Mill Index in kWhr/T

At the Kemess Mine, the effect of a trunnion magnet system on the ball mill was significant. The total mill feed remained essentially unchanged averaging approximately 1300 TPH. However, the total mill power consumption dropped 8% from an average of 7600 kW to 7000 kW. The mill work index dropped 10 percent from an average of 5.5 kW-hr/T to 5.0 kW-hr/T.

Conclusions

This represents a current view of the effects of grinding ball fragments in the milling circuit and the impact on the crushing and grinding circuit. The performance of a trunnion magnet should be compared to the existing operations especially if cost savings and output need improvement. Retro-fitting a ball mill with a trunnion magnet is easy to accomplish, particularly when the benefits are weighed against the cost. There are approximately 150 installations of trunnion magnets around the globe.